
ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 11
Research Publish Journals

Artificial Neural Network Implementation on

FPGA Chip

Sahil Abrol
1
, Mrs. Rita Mahajan

2

ME student
1
 Assistant professor

2

1, 2
Department of ECE, PEC University of Technology, Chandigarh, India

Abstract: In this review paper a hardware implementation of an artificial neural network on Field Programmable

Gate Arrays (FPGA) is presented. The parallel structure of a neural network makes it potentially fast for the

computation of certain tasks. The same feature makes a neural network well suited for implementation in VLSI

technology. Hardware realization of a Neural Network (NN), to a large extent depends on the efficient

implementation of a single neuron. FPGA-based reconfigurable computing architectures are suitable for

hardware implementation of neural networks. FPGA realization of ANNs with a large number of neurons is still a

challenging task. In this paper work of different researchers is presented so that it can help the young researchers

in their research work.

Keywords: Artificial neural network, VHDL, Back propagation Algorithm, Xilinx FPGA, Sigmoid Activation

Function.

I. INTRODUCTION

Neural networks have been used broadly in many fields, either for development or for application. They can be used to

solve a great variety of problems that are difficult to be resolved by other methods. ANN has been used in many

applications in science and engineering. [1] Although, neural networks have been implemented mostly in software,

hardware versions are gaining importance. Software versions have the advantage of being easy to implement, but with

poor performance. Hardware versions are generally more difficult and time consuming to implement, but with better

performance than software versions[2].The aspiration to build intelligent systems complemented with the advances in

high speed computing has proved through simulation the capability of Artificial Neural Networks (ANN) to map,

model and classify nonlinear systems. Real time applications are possible only if low cost high-speed neural

computation is made realizable. Towards this goal numerous works on implementation of Neural Networks (NN) have

been proposed [3].Hardware-based ANNs have been implemented as both analogue and digital circuits. The analogue

implementations exploit the nonlinear characteristics of CMOS (complementary metal-oxide semiconductor) devices, but

they suffer from thermal drift, inexact computation results and lack of re-programmability. Digital hardware-base

implementations of ANNs have been relatively scarce, representative examples of recent research can be found in. Recent

advances in reprogrammable logic enable implementing large ANNs on a single field-programmable gate array

(FPGA) device. The main reason for this is the miniaturization of component manufacturing technology, where

the data density of electronic components doubles every 18 months [4].

ANNs are biologically inspired and require parallel computations in their nature. Microprocessors and DSPs are not

suitable for parallel designs. Designing fully parallel modules can be available by ASICs and VLSIs but it is

expensive and time consuming to develop such chips. In addition the design results in an ANN suited only for

one target application. FPGAs not only offer parallelism but also flexible designs, savings in cost and design cycle [5].

II. COMPARISON BETWEEN SOFTWARE AN HARDWARE IMPLEMENTATION

ANN is an abstract description of human brain. As it is a mathematical model, it can be implemented by integrated circuits

or simulated using computer program. Nonetheless, the inherent parallelism embedded in neural network dynamics can be

only fully realized in hardware implementation. Neumann-type computers are well-known for ANN simulation. However, the

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 12
Research Publish Journals

speed of this kind of simulation is constrained when the size of ANN become large. In addition, software simulation is

executed sequentially. Many researchers are developing VLSI implementations using various techniques, ranging from

digital to analog and even optical. Complete parallel architecture can be realized with ASIC or VLSI, but as ANN design

is targeted for certain problem solving, it is a waste to use ASIC or VLSI for implementation. While the primary

disadvantages of analog implementation are the inaccurate computations and low design flexibility even though they can

possibly provide higher speed with low resource cost, the major problems

ANN with digital architecture are the implementation of the large quantity of multipliers and nonlinear activation function

of neurons. Both of them are usually large in size.

III. ARTIFICIAL NEURON

Artificial neural networks are inspired by the biological neural systems. The transmission of signals in biological

neurons through synapses is a complex chemical process in which specific transmitter substances are released from

the sending side of the synapse. The effect is to raise or lower the electrical potential inside the body of the receiving cell.

If this potential reaches a threshold, the neuron fires. It is this characteristic of the biological neurons that the

artificial neuron model proposed by McCulloch Pitts attempts to reproduce. Following neuron model shown in Fig. 1

is widely used in artificial neural networks with some variations.

Fig: 1. Structural diagram of a Neuron

The artificial neuron given in this figure has N inputs, denoted as x1,x2,…..xN,. Each line connecting these inputs to

the neuron is assigned a weight, denoted as w1,w2,…..wN respectively. The activation, a, determines whether the neuron

is to be fired or not. It is given by the formula:

A negative value for a weight indicates an inhibitory connection while a positive value indicates excitatory

connection.

The output, y of the neuron is given as:

y = f(a) (2)

Originally the neuron output function f(a) in McCulloch Pitts model was proposed as threshold function,

however linear, ramp, and sigmoid functions are also used in different situations. The vector notation

a = w
t
x (3)

can be used for expressing the activation of a neuron. Here, the jth element of the input vector x is xj, the jth element of

the weight vector of w is wj. Both of these vectors are of size N. A neuro-computing system is made up of a number of

artificial neurons and a huge number of interconnections between them. Fig. 2 shows architecture of feed forward neural

network.[5]

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 13
Research Publish Journals

Fig: 2. Layered feed forward Neural Network

In layered neural networks, the neurons are organized in the form of layers. The neurons in a layer get inputs from the

previous layer and feed their output to the next layer. These type of networks are called feedforward networks. Output

connections from a neuron to the same or previous layer neurons are not permitted. The input layer is made of special

input neurons, transmitting only the applied external input to their outputs. The last layer is called the output layer, and the

layers other than input & output layers are called the hidden layers. In a network, if there are input and output layers only,

then it is called a single layer network. Networks with one or more hidden layers are called multilayer networks.

IV. OVERVIEW OF VHDL

VHDL is a language meant for describing digital electronic systems. In its simplest form, the description of a component

in VHDL consists of an interface specification and an architectural specification. The interface description begins with

the ENTITY keyword and contains the input- output ports of the component. The name of the component comes after

the ENTITY keyword and is followed by IS, which is also a VHDL keyword. The description of the internal

implementation of an entity is called an architecture body of the entity. There may be a number of different architecture

bodies of an interface to an entity corresponding to alternative implementations that perform the same function. The

alternative implementations of the architecture body of the entity is termed as Behavioral Description or

Structural Description.

V. NEURON ARCHITECTURE

The different types of architectures for the hardware implementation of an artificial neuron is shown in Fig3, Fig4 and

Fig5.The basic functional units of a hardware neuron compute the inner product for the neuron and it is made up of the

entities shown in Fig3, Fig4,Fig5. The input register was implemented with a shift register for iterative entering of

the input values into the neuron. The weights register was realized using a shift register and it serves the

purpose of entering the corresponding weight of the current input value into the neuron. The multiply accumulate

(MAC) unit of the neuron was realized with combinational circuits for full adder and multiplier. Then the output of

MAC is passed through the activation function which fires if the input to it crosses the threshold value. The activation

function may be a LOGSIG,TANSIG,PURELIN or user define but the most commonly used function is the TANSIG.

Fig 3: Hardware Architecture of an Artificial Neuron [6]

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 14
Research Publish Journals

Fig 4: Functional blocks of the a Neuron [12]

Fig 5: Simple Neuron Architecture [14]

VI. NEURON ACTIVATION FUNCTION

One of the most important parts of a neuron is its activation function. The nonlinearity of the activation function makes it

possible to approximate any function. In the hardware implementation concept of neural networks, it is not so easy to

realize sigmoid activation functions. Special attention must be paid to an area-efficient implementation of every

computational element when implementing large ANNs on digital hardware. This holds true for the nonlinear

activation function used at the output of neurons. A common activation function is the sigmoid function

Efficient implementation of the sigmoid function on an FPGA is a difficult challenge faced by designers. It is not

suitable for direct implementation because it consists of an infinite exponential series. In most cases computationally

simplified alternatives of sigmoid function are used. Direct implementation for non-linear sigmoid transfer functions is

very expensive. There are two practical approaches to approximate sigmoid functions with simple FPGA designs. Piece-

wise linear approximation describes a combination of lines in the form of y=ax+b which is used to approximate the

sigmoid function. Especially if the coefficients for the lines are chosen to be powers of two, the sigmoid functions can be

realized by a series of shift and add operations. The second method is lookup tables, in which uniform samples takenfrom

the centre of a sigmoid function can be stored in a table for look up. The regions outside the center of the sigmoid

function are still approximated in a piece-wise linear fashion. This research presents an approximation approach to

implement sigmoid function. A simple second order nonlinear function can be used as an approximation to a sigmoid

function. This nonlinear function can be implemented directly using digital techniques. The following equation is a

second order nonlinear function which has a tansig transition between the upper and lower saturation regions:

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 15
Research Publish Journals

Where β and θ represent the slope and the gain of the nonlinear function Gs(z) between the saturation regions -L and

L.

In another paper[10], the approximation for the sigmoid function used in this neural network is given by the function:

The circuits may be extracted, which will implement the neural network algorithm. These circuits are extracted by

creating the data flow graph for the above equation. This graph is then used to configure the hardware.

VII. SINGLE LAYER PERCEPTRON IMPLEMENTATION

Definition:―A perceptron is a type of Neural Network which computes a weighted sum of its inputs, and puts this sum

through a special function, called the activation, to produce the output‖. The activation function can be linear or

nonlinear. [11]

A perceptron decides whether an input belongs to one of two classes (denoted by C1 and C2) is shown in the Fig.6.The

single node computes a weighted sum of the input elements, subtracts a threshold (H) and passes the result

through a hard limiting nonlinearity such that the output y is either +1 or -1. The decision rule is to respond class A if the

output is +1 and class B if the output is -1. Useful technique for analyzing the behavior of nets such as the

Perceptron is to plot a map of the decision regions created in the multidimensional space spanned by the input

variables.

Fig.6 Single Layer Perceptron and its Signal Flow Graph[10]

Perceptron Convergence Algorithm[10]:

The updating of weights and bias process follows throughout a n algorithm which is known as PerceptronConvergence

Algorithm. It is explained as below.

Variables and Parameters:

X(n)=(m+1)-by-1 input vector

=[+1,x1(n), x2(n), ….. xm(n)]
T

W(n)= (m+1)-by-1 weight vector

= [b(n), w1(n), w2(n), ….. wm(n)]
T

b(n) = bias

y(n) = actual response (quantized)

d(n) =desired response

η = learning rate parameter, a positive constant less than unity

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 16
Research Publish Journals

STEP 1: Initialization.

Set w(0)=0. Then perform the following computation for

time step n=1,2,…

STEP 2 : Activation.

At time step n, activate the perceptron by applying

continuous valued input vector x(n) and desired response

d(n).

STEP 3: Computation of Actual Response of Perceptron.

y(n)= sgn[(w
T

(n)x(n)].

Where sgn(.) is the Signum function.

STEP 4. Adaptation of Weight Vector.

Update the weight vector of Perceptron:

W(n+1) = w(n) + η.[d(n) – y(n)].x(n)

Where, d(n)= +1, if x(n) belongs to class C1

= -1, if x(n) belongs to class C2

STEP 5: Continuation

Increment time step n by one and go back to step 2.Single Layer Perceptron can learn or be trained by using this Perceptron

Convergence algorithm.

Fig.7 Single layer Single Neuron Perceptron for AND, OR, NAND,NOR function.

Fig.7 shows block diagram of Single layer Single Neuron Perceptron which can be implemented for AND,

OR, NAND and NOR function. Input of Perceptron used here for all functions is 2x4 matrix is: X= [1 1 -1 -1; 1 -1 1

-1]; Target matrix is different for all functions as all functions are different. But it is 1x4 always matrix for 2x4

input matrix.

Target matrix for AND function: T=[1 -1 -1 -1];

Target matrix for NAND function: T=[-1 1 1 1];

Target matrix for OR function: T=[1 1 1 -1];

Target matrix for NOR function: T=[-1 -1 -1 1];

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 17
Research Publish Journals

Perceptron gets input from input matrix and maps actual output (which is initially taken as zero) with target output.

The goal is to minimize the generated the error signal which is nothing but the difference between actual output and target

output.. In this paper, the error signal becomes zero within only two iterations for learning rate =1 and threshold=0. For

varying learning rate and threshold, the Algorithm takes different number of epochs to converge as shown in fig.5. It has

been inferred from the fig that for larger the learning rate, smaller number of epochs (iterations) required.

To implement the Perceptron on Hardware, it is essential that all the values are in the fixed point format. This is because

floating point numbers are never synthesizable.

Table 1: Device Utilization Summary for Perceptron for AND, NAND, OR and NOR function

Logic Utilization Used Available %age

Number of occupied Slices

1..AND2. NAND

3. OR 4. NOR

38 7680 1

40 7680 1

10 7680 0

22 7680 0

Number of 4 input LUTs

1..AND 2. NAND

3. OR 4. NOR

71 15360 1

71 15360 1

17 15360 0

39 15360 0

Number of bonded IOBs

1..AND 2. NAND

3. OR 4. NOR

37 221 16

37 221 16

21 221 9

29 221 13

VIII. CONCLUSION

This paper has presented the design and implementation of a neuron that will be used in any neural network, the activation

function that designed inside the neuron is a sigmoid function. This design was performed using schematic editor tools in

a reconfigurable device (FPGA) program. The design of the neuron will be as a micro neuron. Therefore, the user can use

any numbers of this neuron by just make drag to the neuron component from the library of a schematic editor.Finally , it

can be say that FPGAs technology and their low cost , and re-programmability make this approach a very powerful option

for implementing ANNS as an alternative to the development of custom hardware.

REFERENCES

[1] Medhat Moussa and Shawki Areibi and Kristian Nichols, "On the Arithmetic Precision for Implementing Back-

Propagation Networks on FPGA", University of Guelph, school of engineering, Guelph, Ontario, Canada, 2003.

[2] Rolf F. Molz, Paulo M. Engel, Fernando G. Moraes ," Codesign to Fully Parallel Neural Network for a Classification

Problem" , University Montpellier II, France, 2000.

[3] .A. Muthuramalingam ,S. Himavathi, and E. Srinivasan, “Neural network implementation using fpga: Issues and

Application,” The International Journal of Information Technology , vol. 4, no.2, pp.86-92, 2008.

[4] M.T.Tommiska, “Efficient digital implementation of the sigmoid function for reprogrammable logic,” IEEE

Proceedings, Computers and Digital Techniques, vol. 150, no. 6, pp. 403- 411, 2003.

[5] .A.Savran and S.Ünsal, “Hardware implementation of a feed forward neural network using FPGAs’,” Ege,

Department of Electrical and Electronics Engineering, 2003.

[6] Esraa Zeki Mohammed and Haitham Kareem Ali, “Hardware Implementation of Artificial Neural Network Using

Field Programmable Gate Array” International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October

2013.

[7] Haitham Kareem Ali and Esraa Zeki Mohammed, “Design Artificial Neural Network Using FPGA” IJCSNS

VOL.10 No.8, August 2010.

ISSN 2348-1196 (print)
International Journal of Computer Science and Information Technology Research ISSN 2348-120X (online)

Vol. 3, Issue 1, pp: (11-18), Month: January - March 2015, Available at: www.researchpublish.com

Page | 18
Research Publish Journals

[8] Hardik H. Makwana, Dharmesh J. Shah, Priyesh P. Gandhi,” FPGA Implementation of Artificial Neural Network”

International Journal of Emerging Technology and Advanced Engineering Volume 3, Issue 1, January 2013.

[9] Rafid Ahmed Khalil and Sa'ad Ahmed Al-Kazzaz, “Digital Hardware Implementation of Artificial Neurons Models

Using FPGA” Al-Rafidain Engineering Vol.17 No.2 April 2009.

[10] Simon Haykin ―Neural Networks A comprehensive Foundation second edition, Prentice Hall, 2007, pp. 158-161.

[11] Mu-Song Chen, Ph.D. Thesis ―Analysis And Design of The Multilayer Perception Using Polynomial Basis

Functions the University of Texas At Arlington December 1991.

[12] Chandrashekhar Kalbande & Anil Bavaskar, “Implementation of FPGA-Based General Purpose Artificial Neural

Network” ITSI-TEEE 2320 – 8945, Volume -1, Issue -3, 2013.

[13] Rafael Gadea, Joaquín Cerdá, Franciso Ballester, Antonio Mocholí, “Artificial Neural Network Implementation on a

single FPGA of a Pipelined On-Line Backpropagation”.

[14] Emmanuel Adetiba, F.A. Ibikunle, S.A. Daramola and A.T. Olajide, “Implementation of Efficient Multilayer

Perceptron ANN Neurons on Field Programmable Gate Array Chip” International Journal of Engineering &

Technology IJET-IJENS Vol14 No:01.

